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Abstract—A simple model is described for predicting the linearized buckling load of a composite
beam with multiple delaminations. The model employs an energy method and arbitrary assumed
displacements. Lagrange mulitipliers are used to enforce the kinematic constraints and boundary
conditions, enabling a variety of support conditions to be studied. The accuracy of the approach is
verified by comparing results with previously published data and a series of finite element analyses.
The effects of delamination depth and length on the buckling load are investigated in detail for
beams with one and two delaminations. Euler or thin film buckling is observed in most cases.
However, for a beam with two delaminations located so that there are two laminae of equal
thickness, antisymmetric S-shaped buckling modes are observed for certain delamination lengths.

1. INTRODUCTION

The rapidly increasing use of composite materials has led to demands for a better under-
standing of their mechanical behavior and possible failure mechanisms. One of the most
common failure modes is delamination. Delaminations can exist for several reasons. For
example, flaws in the production process can introduce foreign objects or gaps between the
laminae. They can also occur as a result of impact by external objects during the operational
life of the structure, since the resin which binds the laminae together is rather weak. The
presence of delaminations reduces the overall stiffness, and thereby lowers the load carrying
capacity of the structures. This paper describes a numerical model for rapidly computing
the critical loads of beams with multiple delaminations. The model allows the effect of
changes in geometric parameters, such as the length and depth of the delaminations, to be
examined quickly. An energy method is used, in which the total potential energy is dis-
cretized using the Rayleigh-Ritz method, and the continuity requirements and the boundary
conditions are enforced using Lagrange multipliers.

A number of researchers have studied delamination buckling in the past. Knauss et al.
(1980) performed experiments to visualize the failure process. They reported that failure
caused by an impact could be divided into two phases. In the first phase, the laminate is
impacted by a foreign object and the resulting effect is interlaminar separation. In the
second phase, the laminate could buckle under the effect of applied loads and experience
further delamination growth. The same workers (Chai et al., 1981) proposed a one-
dimenstonal model to describe the growth of delaminations in a beam using the fracture
energy of the material. They divided the delaminated beam into four regions using the
delamination as the boundary. Kinematic continuity and equilibrium conditions were
satisfied between adjoining regions. They presented two models: a simple thin film model
in which the delamination divides the beam into a very thin and a very thick region, and a
general model where the delamination divides the beam into two regions of approximately
equal thickness. Simitses et al. (1985) used the same four region model to predict the critical
loads for delaminated homogeneous beams. The effect of delamination position, size and
thickness on the critical loads were studied in detail for simply-supported and clamped
boundary conditions. The characteristic equations required for the solution of the eigen-
value problem were derived from the principle of existence of an adjacent equilibrium
position.

Several researchers (Chen, 1991; Kardomateas and Schmueser, 1988) have incor-
porated the effect of transverse shear into their studies. Chen (1991) derived the equilibrium
equations for each lamina from the variational energy principle. Compatibility, kinematic
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continuity and equilibrium requirements were then imposed between appropriate regions.
Kardomateas and Schmueser (1988) used the perturbation technique to derive the equations
for the critical loads and the postbuckling deflections. The instability problem arising from
local buckling or mixed mode buckling involving local and global modes was also studied.

Sheinman and Soffer (1991) proposed a geometrical nonlinear model for tracing the
equilibrium path into the postbuckling region. A finite difference scheme incorporating
Newton’s method was used to solve the nonlinear equilibrium equations. The influence
of the delamination ratio, initial imperfections and the stretching-bending effect on the
postbuckling characteristics of the beam was studied.

The problem of a single delamination in a circular plate has been studied by Bottega
and Maewal (1983), Larsson (1991a), Yin (1985), and Yin and Fei (1988). As a result of
the axisymmetric nature of the problem, the plate is reduced to a two dimensional plane,
and a three region model adopted. These studies focussed on the postbuckling behavior of
the plate, and investigated the initiation and stability of the growth of the delamination.

Perhaps because of its relative complexity, the problem of multiple delaminations has
not yet been as extensively studied as the solitary case. However, there have been some
notable attempts to solve this more general problem. Wang ef al. (1985a, b) developed
models and performed experiments to investigate the buckling stability of, and delamination
growth in, random short fiber composites (which are essentially homogeneous, orthotropic
materials). Two analytical techniques were employed : a Rayleigh—Ritz method for studying
the single delamination case, and the finite element method for solving the plane elasticity
problem associated with multiple delaminations. Although the analysis was found to be in
good agreement with the experimental results, this study was restricted to symmetric
buckling modes. Larsson (1991b) considered multiple delaminations under axisymmetric
geometry and loading conditions. The model allowed for non-frictional contact between
the layers and anisotropic material behavior. The thin film approximation was used, which
in effect neglects bending deformation in the undamaged portions of the plate. Kutlu and
Chang (1992) have perhaps presented the most extensive analytical and experimental study
to date on multiple delaminations. A finite element model was developed that modeled the
collapse of delaminated plates, and included delamination growth and contact between the
various layers. It should be noted that this work examined the collapse of the plate, rather
than the linearized buckling problem per se. Most recently, Lee et al. (1993) employed the
finite element method to compute the buckling loads and modes of a plate with multiple
delaminations using a layer wise plate theory.

The research reported in this paper has three objectives. First, to develop a simple
mathematical model that can be used to perform quick parametric studies of the buckling
of composite beams with multiple delaminations. Second, to verify the model by com-
parisons with solutions generated using the finite element method and results published
elsewhere. Third, to use this model to investigate the linearized buckling behavior of a beam
with several delaminations. The paper is organized as follows. Section 2 describes the model
employed. The use of Lagrange multipliers in conjunction with an energy method for
computing the buckling loads of structures is summarized in Section 3. Section 4 discusses
the energy formulation for the delaminated beam in detail. Some results are presented in
Section 5, and Section 6 contains the conclusions.

2. PROBLEM DEFINITION

The model of the delaminated beam employed in this study shown in Fig. 1 is similar
to that used by Chai ez al. (1981) for the case of single delamination. A beam of length L
and thickness ¢ has k delaminations of equal length /, lying along a plane parallel to the
undeformed length of the beam. The delaminations are located symmetrically so that the
lengths of the undelaminated sections of the beam are equal (i.e. /;, ; = /., ;). The depth of
each delamination is d, i = 1, 2, ..., k, and the thickness of each lamina is denoted by ¢,
where i =1, 2, ..., k+1. The beam can therefore be divided into k+ 3 regions as shown
in Fig. 1. Normalized lamina thickness, f;, delamination depth, d;, and length, [, are
introduced such that
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A Cartesian coordinate system (s;, z;) is placed at the left end of each of the k+ 3 regions,
where the s; axis corresponds to the neutral axis of the region (see Fig. 2). Moreover, u; and
w,i=1,2,...,k+3, denote the in-plane and transverse displacement of the mid-plane of
each region, respectively.

The beam is composed of an arbitrary number of orthotropic laminae. The con-
ventional notation is used to indicate the stacking sequence of the plies; for example,
[0/45/90} denotes ply orientations of 0°, 45° and 90°. In addition, the double slash notation
introduced by Kutlu and Chang (1992) will be employed to identify the locations of the
delaminations in composite beams. Thus, [0//45/90] indicates the presence of a delamination
between the 0° and 45° plies. Since each lamina behaves as a linear elastic material, any
nonlinearity is purely geometrical. The length and the thickness of each region are such
that Euler-Bernoulli beam theory is applicable throughout. An axial compressive load of
magnitude P is applied at each end of the beam as shown in Fig. 2. Any geometric boundary
condition may be applied at either end of the beam, such as fixed, simply-supported, or
free.

3. ENERGY METHODS FOR APPROXIMATING BUCKLING LOADS

Energy methods present approximate but simple tools for solving buckling problems.
The fundamental principle is that a static conservative system is in a state of stable equi-
librium if, and only if, the value of its potential energy is a relative minimum. To demonstrate
the basic idea, let the total potential energy of a conservative mechanical system be V, and
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Fig. 2. Coordinate systems and neutral axes of the delaminated beam.
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assume that the displacements in the structure can be represented by several coordinate
functions a,, a,, ..., a,, so that

V= V(alyab""an)' (4)
Equilibrium is satisfied when V is stationary, i.e. when

oV
— = f | = N 3
7a, 0, foralli=1,2,...,n (5)

The Rayleigh—Ritz method approximates the buckling load in those cases in which the
exact solution of the underlying differential equation becomes too cumbersome (Bleich,
1952 ; Brush and Almroth, 1975). In this approach, the buckled shape of the structure is
assumed to be a linear combination of several functions. The critical ioad is then obtained
by minimizing the total potential energy with respect to the unknown coefficients q;, since
this will give the loads at which the assumed deformation is in equilibrium with the applied
loads. Thus, any prebuckling deformation is implicitly neglected. The successful application
of the Rayleigh-Ritz method hinges largely on the appropriate choice of the coordinate
functions. In general, each term of the expansion should satisfy the geometric boundary
conditions and kinematic constraints associated with the problem, which limits the choice
of functions in many cases.

However, if Lagrange multipliers are included in the energy expression, each term of
the expansion does not need to satisfy the geometric boundary conditions or constraints
(Budiansky and Hu, 1945; Bleich, 1952). This can greatly simplify the selection of the
assumed displaced shape. The procedure is implemented by introducing additional terms
into the expression for the total potential energy of the system in the form of the unknown
Lagrange multipliers multiplied by functions that express the required constraints. These
additional terms are equivalent to the change in potential of the restraining forces in their
movement through the violated boundary conditions.

The final total potential energy of the system. ¥, then becomes

I7=I/(alaaZa'''5an)—ﬂ'l.fl——)"Z,f2_'“_‘Ar.fr’ (6)

where 4; are the Lagrange multipliers, and the r equations

ﬁ(al,a2,""an)=0 (7)

express the kinematic constraint conditions which are not satisfied by the selected coordinate
functions. The total number of unknowns is (n+r), which are then determined by solving
the n equations given by

ov
~—=0, foralli=1,...,n, (®)
da;
and the r equations obtained from
%:0, foralli=1,...,r. )

This generally leads to an eigenvalue problem, in which the eigenvalues give the buckling
loads, and the corresponding buckling modes are given by the eigenvectors.
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4. ENERGY FORMULATION FOR DELAMINATED BEAMS

To apply the energy method to the delaminated beam, both the geometric boundary
conditions and kinematic continuity between the beam regions must be enforced using
Lagrange multipliers. For example, appropriate boundary conditions at the left end of the
beam (i.e. at s, , = 0) would be

Uy = Wi =0 (10)
for simple supports, and

ow,
U2 = Wi = aks+2=0 (11)

for clamped supports. Constraints must be enforced at the junctions of the k+ 3 regions to
ensure that plane sections of the beam remain plane. At the junction between regions 1,
.,k+1 and k+ 2, the appropriate kinematic continuity conditions are

W1|s,=o == Wk+1|sk+,=o = Wk+2lsk+2=1k+2, (12)
ow, __'__awk+l _awk+2 13
3 - T8 ) (13

S lsy=0 S lser=0 S dske2=lksz

and

Wi, 2

Os

t -
Uils—0 = uk+2|sk+z=lk+z_§(1+ti—23i) , =1L k+l. (14

Ser2=ley2

Under the usual assumptions made for Euler-Bernoulli beams, the potential energy of
the composite beam can be divided into four parts : the axial strain energy

05 [ () 09

the bending strain energy

k+3 62
U, = Z DY) (a 2) ds;, (16)
the strain energy due to coupling between bending and stretching

k+3 au 0w,

——Z 16 azds,-, amn

and the potential energy of the applied load

k+3
Z : (g‘:) ds,, (18)

where 49}, BY} and DY} are the familiar stretching, coupling and bending stiffness, respec-
tively, for region i of the beam. These stiffnesses are defined in terms of the axial stiffnesses
of the individual laminae in each laminated beam section [see Whitney (1987), for example,
for more details]. Note that, if attention is restricted to an isotropic, homogeneous material,
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AP = EA,, (19)
B, =0 (20)

and
DY) = EI, (21)

where E is Young’s modulus, and A4; and I; are the cross-sectional area and moment of
inertia of region i, respectively. Hence,

V=U+U-+U—Q 22)

Ineqn (18), P, represents the axial load carried in each region of the beam. Since prebuckling
bending deformations are neglected,

Pir=Po3=P (23)
and
Af) :
Pi:WP’ i=12,...,k+1, (24)
which reduces to
P=Pt, i=12,... ,k+1, (25)

for an isotropic, homogeneous material. Furthermore, only the bending deformation is
considered in eqn (18). This is because buckling is a bending phenomenon and the axial
deformation that occurs in the equilibrium state before buckling has no bearing on the
evaluation of the critical loads.

Fourier series and quadratic polynomials are used to discretize the energy expression.
The assumed displaced shapes in each of the £+ 3 regions of the beam are

m==6 . n==6 i
wis) = Y A, cos@ +Y B, sin”’l”' +A5,+B, (26)
m=1 i n=1 i
and
u,-(s,-) = C2i5i2+ Cl,-si+ Coi- (27)

Evaluating the first derivative of the potential energy with respect to the unknown geometric
coordinates and Lagrange multipliers produces the generalized eigenvalue problem

[A1{¢} = Pee[Bl{0}, (28)

where P, is the critical buckling load. The unknown coordinate functions which describe
the assumed displaced shape are obtained from the eigenvector {¢}. Both of the matrices
[4] and [B] are symmetric; however, they may not be positive definite. The generalized
eigenvalue problem was solved using an IMSL routine that uses the QZ algorithm of Moler
and Stewart (1973).
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Table 1. Normalized buckling loads for a simply-supported beam with
a single delamination, d, = 0.40

_ Energy Simitses ef al.
I method Abaqus (1985)
0.20 0.9997 0.9997 0.9997
0.40 0.9902 0.9902 0.9902
0.60 0.9198 0.9197 0.9198
0.80 0.7264 0.7264 0.7264
5. RESULTS

This section presents results obtained using the model described above to study the
buckling behavior of beams with one and two delaminations. Comparisons are made with
results computed using the Abaqus finite element code, thin film buckling loads (Chai er
al., 1981), and data previously published by Simitses et al. (1985), Kutlu and Chang (1992),
and Lee et al. (1993).

5.1. Single delamination

To verify the accuracy of the model employed in this study, the finite element code
Abaqus was used to compute the buckling loads of selected beams with a single delami-
nation. Attention here is restricted to beams composed of an isotropic, homogeneous
material. Table 1 shows the numerical results obtained with d, = 0.4 for simply-supported
boundary conditions using the energy method and Abaqus, as well as those published in
Simitses et al., (1985). The table shows the normalized buckling load, P, defined as

B P crit
P crit = s
P Euler

(29)

where Pg,, is the Euler buckling load for the undelaminated beam. Clearly there is excellent
agreement between the various methods, with any differences being negligible for all prac-
tical purposes.

Figures 3 and 4 show plots of the normalized buckling load, P., versus normalized
delamination length, ;, for beams clamped and simply supported at both ends, respectively,
with single symmetric delaminations at various depths. Also shown are the results predicted
using the thin film model (Chai et al., 1981), whereby

1.0

Perir

0.0 0.5 1.0
h

Fig. 3. Normalized buckling loads for a clamped beam with a single symmetric delamination for
various values of d, (dashed lines show thin film predictions).
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Fig. 4. Normalized buckling loads for a simply-supported beam with a single symmetric delami-
nation for various values of d, (dashed lines show thin film predictions).

ET':2 dl >
P = 3 (i) Z, (30)

for a beam of unit width.

The data shown in Figs 3 and 4 are generally in good agreement with the results
presented in Simitses ef al. (1985). A transition between Euler and thin film buckling is
observed as the delamination length is increased. As expected, the thin film model gives
accurate results for the shallow delaminations (d, < 0.1). However, for deeper delami-
nations, there is a range of lengths for which there is a transition between the thin film and
Euler buckling loads. For the simply-supported case, the thin film buckling formula gives
poor results when d, = 0.4 and 0.5.

There is one discrepancy between the results shown in Fig. 3 for the clamped boundary
conditions and those shown in Simitses et al. (1985). For d, = 0.5, the energy method
predicts a suspicious kink in the plot of P versus | for 0.35 < | < 0.4. Further inves-
tigations revealed that this was due to the presence of an antisymmetric S-shaped buckling
mode that is often the second mode. Figure 5 shows a plot of the critical loads associated
with the first two buckling modes for d, = 0.5. There is an interchange between the lowest

1.0 T
S-shaped \
/ buckling \
\ thin film
| " buckiing
\\
09 \\
\
— \
Py “
Y
\
\
AY
A}
A}
08| .
Euler-type /
buckling
0 7 1 1
0.3 0.4 0.5 0.6

L
Fig. 5. Critical loads for the first two buckling modes of a clamped beam with a single symmetric
delamination ; d, = 0.5.
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~—_ / T~ P.; = 0.8769

—_— — P = 0.8915
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Fig. 6. First two buckling mode shapes for a clamped beam with a single symmetric delamination :
I,=0375,d,=0.5.

modes for 0.35 < /; < 0.4 that causes the kink seen in Fig. 3. Figure 6 shows these two
modes for I, = 0.375 (the buckling modes are depicted by plotting the neutral axes of the
different laminae), and reveals the S-shaped buckling pattern, which does not involve
contact between the laminae. These observations were verified using Abaqus, and were also
noted in Lee ef al. (1993).

One advantage of the energy method developed in this paper is the ease with which
different boundary conditions can be considered. Figure 7 shows normalized buckling loads
for a beam with clamped, simply-supported boundary conditions. The trends are fairly
similar to those observed for the purely simply-supported case. Euler buckling controls for
short delaminations, whereas the thin film model works well for long, shallow delaminations.
However, for d, = 0.4 and 0.5, there is no agreement with the thin film predictions.

5.2. Two delaminations

Perhaps the most useful feature of the model described here is its ability to rapidly
study the linearized buckling of beams with multiple delaminations. This section focuses
on beams with two delaminations and clamped and simply-supported boundary conditions,
while still only considering isotropic, homogeneous materials. One of the problems associ-
ated with this situation is the large amount of data that can be generated by varying the
depths of the two delaminations. Rather than considering every possible combination, the
following results attempt to demonstrate the different types of buckling behavior that have
been observed.

To further verify the proposed method, Table 2 shows a comparison between the
results generated by Abaqus and the energy method for various delamination lengths with
d, = 0.3 and d, = 0.6. Once again, the agreement is excellent. Figure 8 shows plots of the
normalized critical load versus normalized delamination length for a beam clamped at each
end. The depth d, was held fixed at 0.6, while d, was varied from 0.1 to 0.9 in increments
of 0.1 (excluding 0.6). Also shown are the critical loads from the thin film analysis for

1.0

Fcn'

0.5

0.0
0.0 0.5 1.0

Fig. 7. Normalized buckling loads for a clamped, simply-supported beam with a single symmetric
delamination for various values of d, (dashed lines show thin film predictions).
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Table 2. Normalized buckling loads for a
clamped beam with two delaminations,
d; =030,d, =0.60

L=1 Energy method Abaqus

0.20 0.8939 0.8940
0.40 0.5054 0.5056
0.60 0.2374 0.2375
0.80 0.1374 0.1375

0.0
0.0

h=bh
Fig. 8. Normalized buckling loads for a clamped beam with two delaminations for various values
of d,; d, = 0.60 (dashed lines show thin film predictions for 4, = 0.1, 0.2, 0.3).

d, = 0.1, 0.2, and 0.3. The results for the two delaminations in Figure 8 basically fall on
three distinct lines. First, when d, = 0.1, 0.5, 0.7 and 0.9, the buckling load is predicted by
the thin film results for d, = 0.1 or the Euler buckling results, depending on the delamination
length. Similarly, when d, = 0.2, 0.4, and 0.8, the results agree well with thin film buckling
for d, = 0.2 or the Euler load. Finally, for d, = 0.3, the buckling load is given either by the
Euler load for [, < 0.2 and the thin film load for d, = 0.3 when ], > 0.4. A transition zone
appears to exist for 0.2 < [, < 0.4.

The first two of these observations can be explained in the following manner. Consider
Fig. 9, which shows sketches of the beam for d;, = 0.2, 0.4, 0.8 and d, = 0.6. In each case,
the smallest lamina thickness is 0.2. Therefore, for sufficiently large values of [, the critical
load will be controlled by the buckling of the thinnest lamina, i.e. by the thin film buckling
load for d, = 0.2. However, when d, = 0.4, the thin film will be the middle lamina, and
therefore thin film buckling will involve contact with either of the other laminae. The

4, =02
4, =06
d1 0.4
d, =06
4, =08
2, =06

Fig. 9. Geometry of the beam with two delaminations for 4, = 0.2, 0.4, 0.8, and d, = 0.6.
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/\ I =01, Py = 1.000

\/\ I, = 02, P =089

\/\ I = 03, Poy = 0.592
\//\ Iy = 04, P = 0505

__._—.-———r"///’/”_\\\\\\\\‘“‘—-—-'——— I} P = 0335
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l[ = 0.8, I_jc,,', = 0.137

e S

Fig. 10. Buckling mode shapes for the clamped beam with two delaminations: 4, = 0.3, d, = 0.6.

Fcﬁ, = 0.110

linearized buckling analysis presented in this paper cannot model this contact, and further
computations would be necessary to fully understand the collapse of this geometry. A
similar explanation can be made for d, = 0.1, 0.5, 0.7, and 0.9.

The case d, = 0.3, d, = 0.6 is particularly interesting. Figure 10 shows plots of the
buckling modes for various values of /, between 0.1 and 0.9. Three distinct patterns can be
seen: the Euler mode for J, = 0.1, S-shaped buckling for 0.2 </, < 0.4, and thin film
buckling for J, = 0.5. Thus, the transition between Euler and thin film buckling observed
in Fig. 8 is associated with the S-shaped buckling shown in Fig. 10. Furthermore, this
buckling pattern generally involves contact between the laminae, and so a more complex
model would be required to investigate the postbuckling behavior further. Detailed par-
ameter studies have shown that the S-shaped buckling only occurs for the two delamination
case for certain values of /, when the thickness of two of the laminae are equal and lic in a
particular range. Figure 11 shows plots of the buckling load versus delamination length for

1.0

Fcn'

0.0
0.0 0.5 1.0

h=h
Fig. 11. Normalized buckling loads for a delaminated clamped beam with two lamina of equal
thickness for various values of d,; d, = 2d,.

SAS 30:22-E
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1.0
r)cn'l
0.5
07,09
0.0 .

0.0 05 1.0
h=h

Fig. 12. Normalized buckling loads for a simply-supported beam with two delaminations for various
values of d, ; d, = 0.60 (dashed lines show thin film predictions for 4, = 0.1, 0.2, 0.3).

different geometries with laminae of equal thickness. S-shaped buckling is observed to occur
for values of d, = d, = 0.275 to d, = d, = 0.375 when [, lies roughly between 0.2 and 0.45.

Figures 12, 13 and 14 show the resuits of a similar study of a beam simply supported
at each end. Figure 12 contains plots of buckling load versus delamination length for
d, = 0.6 and various values of d,. Once again, three types of buckling are observed. The
Euler and thin film buckling loads are closely followed when d, = 0.1, 0.2, 0.4, 0.5, 0.7, 0.8
and 0.9 for the same reasons as in the clamped case discussed above. For d, = 0.3, a
transition between Euler and thin film buckling is again observed which is associated with
S-shaped buckling. Figure 13 shows the mode shapes for different values of [, and highlights
the three types of buckling. Figure 14 demonstrates that S-shaped buckling can occur for
geometries with two laminae of equal thickness over a range of delamination lengths. For
the simply-supported boundary conditions, /, must lie between 0.45 and 0.85 for this to
occur.

/\ I, = 0.1, P = 1.000
I, =02, P, = 0.999

/_\ il =03, —P-C’ﬂ = 0.994

I, =04, Py = 0969

\/\ =05, Py = 0742
\\/\ b= 06, Py = 0.606
\\\_/\_\\ =07, Py = 0.527

A I, =08, P, = 0475

—  —— T

—/\ 1-1 _ 09’ P_m.l — 0.384

Fig. 13. Buckling mode shapes for the simply-supported beam with two delaminations: d, = 0.3,
d, =0.6.



Buckling analysis of a composite beam 3097

1.0

)

0.0
0.0 0.5 1.0

L=h
Fig. 14. Normalized buckling loads for a delaminated simply-supported beam with two laminae of
equal thickness for various values of d,; d, = 2d,.

5.3. Multiple delaminations in composite beams

So far, attention has been restricted to beams composed of an isotropic, homogeneous
material. The large number of material and geometric parameters associated with delami-
nated composite beams make a generic study of the buckling behavior of this type of
structure extremely difficult. Therefore, in this section, the proposed model is compared to
results published by other researchers to highlight the strengths and weaknesses of the
method.

Figure 15 shows plots of the normalized buckling loads for three different composite
beams computed using the energy method and Abaqus. There is excellent agreement
between the two methods for the [04//0,] and the [04//(£45)4/04] lay-ups ; however, as the
delamination length increases, differences arise for the [0/45/0//(45/0);/45] case. Further
investigation revealed that this was caused by prebuckling deformations resulting from the
nonzero coupling stiffnesses of the undelaminated beam sections, which are explicitly
neglected by the classical linearized buckling analysis employed in this paper. Apparently,
there is a range of geometries and ply lay-ups for which this coupling effect will lead to
errors in the predicted buckling loads for all methods based on classical linearized analysis.

Some of the geometries considered in Fig. 15 can be used to compare the results of the
proposed model with those presented in Kutlu and Chang (1992). For example, Kutlu and
Chang state that the [0,//0,] beam with [; = 0.375 “buckled at a load near 3,500 1bf/in.”

1.0 5
P A

05
O [04//0)
O[04/ /(£ 45%/04]
A [0/45/0//(45/0)/45]

0.0 !

0.0 0.5 1.0

Fig. 15. Normalized buckling loads for three composite delaminated simply-supported beams (the
solid lines and symbols denote results produced by the energy method and Abaqus, respectively).
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051

0.0
0.0 0.5 1.0

Fig. 16. Normalized buckling loads for two composite delaminated simply-supported beams [the
solid lines and symbols denote results produced by the energy method and Lee er al. (1993),
respectively].

The linearized buckling load computed using the energy method was 3,980 1bfin~' (com-
pared to 3,960 Ibf in ' computed using Abaqus). Thus, reasonable agreement is observed
between these different methods when it is noted that Kutlu and Chang were performing
collapse analyses, rather than calculating the linearized buckling loads directly.

Buckling loads for composite beams with multiple delaminations are reported in Lee
et al. (1993). Figure 16 shows a comparison between the reported buckling loads and those
generated using the energy method for two beams with two delaminations symmetrically
located through the thickness. The beams were composed of an orthotropic, homogeneous
material, and so are identical to problems solved by Wang et al. (1985a, b). Clearly, the
two different methods produce almost identical results, and are also in agreement with
Wang et al. (1985a, b).

6. CONCLUSIONS

An energy method has been developed for computing the linearized buckling loads of
delaminated composite beams. The Rayleigh-Ritz method is used in which the dis-
placements in each lamina of the beam are approximated using Fourier series and poly-
nomials. Lagrange multipliers are used to enforce constraints arising from the boundary
conditions and the kinematic continuity requirements between the different sections of the
beam. The method enables the buckling loads and modes to be rapidly computed for a
variety of boundary conditions and a number of delaminations.

The accuracy of the energy formulation was examined by computing the buckling
loads for isotropic, homogeneous beams with a single delamination and clamped and
simply-supported boundary conditions. The results were observed to compare well with
previously published data. In addition, selected results agreed with those generated using
the Abaqus finite element package. For the single delamination case, Euler buckling domi-
nates if the delamination is sufficiently short. For longer, shallow delaminations, thin film
buckling controls. There is a transition between Euler and thin film buckling for deeper
delaminations ; when simply-supported boundary conditions were considered, the thin film
results gave poor buckling load predictions for deep delaminations (i.e. d, = 0.4).

Studies of isotropic, homogeneous beams with two delaminations revealed some inter-
esting phenomena. Generally, the linearized buckling load is controlled either by the Euler
buckling load if the delaminations are short enough, or by the thin film buckling of the
thinnest lamina. It should be noted that this can result in contact between the laminae if
the thinnest lamina is not adjacent to the top or bottom surfaces of the beam. If there are
two laminae of equal thickness, then there is a range of delamination lengths for which S-
shaped buckling occurs, which also involves contact between the layers.
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Some comparisons were made between the buckling loads predicted by the energy
method for composite beams and those published elsewhere. Generally, good agreement
was observed. However, it was also noted that prebuckling bending deformations resulting
from the bending-stretching coupling present in unsymmetric lay-ups can sometimes lead
to inaccuracies when a classical linearized buckling analysis is used.

Since the results presented in this paper are based on a linearized buckling analysis,
no information has been produced related to the postbuckling behavior of the delaminated
beams. For the single delamination case, it is well known that thin film buckling is not
generally accompanied by the collapse of the entire beam (Yin et al., 1986). Further studies
are required to investigate the collapse of the beam with two delaminations, especially in
those cases that involve contact between the laminae in the buckling modes.
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